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Percolation thresholds of the duals of the face-centered-cubic, hexagonal-close-packed,
and diamond lattices

S. C. van der Marck
SIEP Research and Technical Services, P.O. Box 60, 2280 AB Rijswijk, The Netherlands

~Received 16 January 1997!

A calculation of percolation thresholds of thedual latticesof the face-centered-cubic~fcc! lattice, the
hexagonal-close-packed~hcp! lattice, and the diamond lattice is presented. The results are used to investigate
whether these thresholds can be related to the thresholds of the fcc, hcp, and diamond lattices themselves. In
two dimensions there is such a relation, but the present results indicate that there is no such relation in three
dimensions. Also, the site percolation threshold of the dual of the diamond lattice turns out to be high:
Although the average coordination numberq of this lattice is 623, its site percolation threshold is higher than for
many lattices withq55. @S1063-651X~97!00906-9#

PACS number~s!: 64.60.Ak, 64.60.Cn, 64.70.Pf
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I. INTRODUCTION

Percolation processes are relevant to a variety of phys
problems and have been treated by many authors~for re-
views, see Refs.@1,2#!. Most of the attention has been give
to percolation on regular lattices because it is much easie
compute quantities for these lattices. Nevertheless, exact
colation thresholds are known for only few lattices. For so
other lattices, rigorous bounds on the percolation thresh
have been derived~e.g., in Ref.@3#!. For most lattices only
numerical estimates are known.

Many investigators have sought some sort of regularity
the mostly numerical results. For instance, people h
searched for empirical formulas, which express the perc
tion thresholdpc of a lattice in terms of its more simpl
properties. The formulas that have been proposed use
dimensiond and the coordination numberq of the lattice.
For instance, Galam and Mauger, who presented a brie
view of the progress in this area, proposed a single form
that would apply to all lattices@4,5#:

pc5p0@~d21!~q21!#2adb. ~1!

The parametersa, b, and p0 were determined by fits to
known values for a number of lattices. For site percolat
thresholds one always hasb50, whereas for bond percola

TABLE I. Description of the dual of the face-centered-cub
lattice as a lattice with a three-point basis. Each of the points in
first row is connected to the points listed in its column.

1, x 2, x 3, x

2, x 1, x 1, x
2, x1(21,0,0) 1,x1(1,0,0) 1,x1(1,0,0)
2, x1(21,1,0) 1,x1(1,21,0) 1,x1(0,1,0)
2, x1(21,0,1) 1,x1(1,0,21) 1, x1(0,0,1)
3, x
3, x1(21,0,0)
3, x1(0,21,0)
3, x1(0,0,21)
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tion thresholdsb5a. Galam and Mauger observed that the
are only two classes of lattices~for d,7). The results of Eq.
~1! for all lattices in Ref.@4# were very good.

However, in Refs.@6,7#, percolation thresholds were ca
culated for many lattices that were not included in t
Galam-Mauger study. Among these lattices were many
had equald andq, but different percolation thresholds. Th
conclusion was therefore thatd and q are not sufficient to
predict percolation thresholds.

This raises the question of what is really known about
trends in the values of the percolation thresholds. In gene
one can say that lattices with a higher coordination num
have lower percolation thresholds. There is an exception
this rule in two dimensions~the Kagome´ lattice @7#!, but in
three dimensions this rule holds for all known percolati
thresholds. However, the rule is only an observation on
basis of~numerically! known threshold values; there is n
theoretical proof.

In two dimensions, there is another rule that has be
established, in this case theoretically. Sykes and Essam@8#
conjectured that the bond percolation threshold of a tw
dimensional lattice and the one of its dual lattice should a
to one. Kesten later proved this rigorously for periodic tw
dimensional lattices with at least one axis of symmetry@9#.
In three dimensions, not much is known theoretically. Ev
numerically, the only example one had until recently was
percolation threshold of the simple cubic lattice, which is
own dual lattice. In this case the sum is 0.248810.2488
50.4976. From the recent data in Ref.@7#, one can check

FIG. 1. Wigner-Seitz cell for the hexagonal-close-packed latti
The basis points for the dual lattice are numbered; see also Tab

e
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TABLE II. Description of the dual of the hexagonal-close-packed lattice as a lattice with a six-point basis. Each of the points in
row is connected to the points listed in its column.

1, x 2, x 3, x 4, x 5, x 6, x

2, x 1, x 1, x 2, x 3, x 4, x
3, x 4, x 1, x1(1,21,0) 2,x1(1,21,0) 3,x1(21,1,0) 4,x1(21,1,0)
3, x1(21,1,0) 4,x1(21,1,0) 1,x1(0,21,0) 2,x1(0,21,0) 3,x1(21,0,0) 4,x1(21,0,0)
3, x1(0,1,0) 4,x1(0,1,0) 4,x 3, x 6, x1(20,0,1) 5,x1(0,0,21)

4, x1(0,0,1) 3,x1(0,0,21)
5, x 6, x

5, x1(1,0,0) 6,x1(1,0,0)
5, x1(1,21,0) 6,x1(1,21,0)
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that in almost all cases the bond percolation thresholds
three-dimensional lattice and its dual add up
0.49560.002. The only exceptions are the body-center
cubic lattice~0.583! and a random lattice~0.491!. One could
speculate that there is a general rule with only a few outlie
However, all the lattices for which the bond percolati
thresholds add to 0.49560.002 are ‘‘stacked lattices.’’ Tha
is, these lattices are constructed by stacking two-dimensi
lattices directly on top of each other. These lattices are th
fore almost all anisotropic.

The most important three-dimensional lattices are
ones that one encounters in nature. In solid state phy
these are called the simple cubic, the bcc, the fcc, the
and the diamond lattice@10#. The percolation thresholds o
all these lattices have been calculated numerically@1#. For
the dual latticesthis has only been done for the bcc latti
@7# ~and the simple cubic lattice, which is self-dual!.

Therefore I calculated the percolation thresholds for
duals of the fcc, hcp, and diamond lattices. The results jus
two conclusions. First, the sum of bond percolation thre
olds of a lattice and its dual is different for all lattices. Se
ond, the dual of the bcc lattice has a high coordination nu
ber (q̄562

3!, but its site percolation threshold is higher th
that of many lattices withq̄55. In other words, the site
percolation thresholds arenot ordered with respect to th
coordination number of the lattice.

FIG. 2. Wigner-Seitz cell for the diamond lattice. The ba
points for the dual lattice are numbered; see also Table III. P
6 is indicated in gray because it is located in an adjacent Wig
Seitz cell. Its position can be found by extending the line from po
5 to point 3.
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II. DUAL LATTICES

The dual lattice of a given lattice can be constructed
use of the Wigner-Seitz cell~or Voronoi polyhedron@11#!.
The ‘‘corners’’ of the Wigner-Seitz cell are the sites of th
dual lattice; the edges of the Wigner-Seitz cell are the bo
of the dual lattice. If one considers a number of spheres
are stacked to form a fcc lattice, the dual lattice can be us
e.g., to describe the empty space in between the sph
This method has been used, among other things, for calc
tions of fluid flow @12# and electrical conductivity@13# in
random bead packs.

A picture of the Wigner-Seitz cell for the fcc lattice ca
be found in Ref.@10#. The dual of the fcc lattice can b
described as a lattice with a three-point basis; see Tab
One basis point has eight connected neighbors, the other
basis points have four. Therefore the average coordina
number of this lattice is 513.

The dual of the hcp lattice is described in Table II as
lattice with a six-point basis. I have indicated my choice f
these basis points in Fig. 1, where a picture of the Wign
Seitz cell of the hcp lattice is shown. These Wigner-Se
cells are stacked to fill the space. In the case of the
lattice, the cells that are displaced by one unit in thex3
direction are also rotated byp aroundx3. Two basis points
of the dual lattice have eight connected neighbors, wher
the remaining four basis points have four. Therefore this
tice also has an average coordination number 51

3.
The Wigner-Seitz cell for the diamond lattice~Fig. 2! is

t
r-
t

FIG. 3. Examples of the scaling of the site percolation thresh
with the linear system sizeL: the duals of the fcc and diamon
lattices. The lines are determined by fits to the data points for
three largest lattices, using a fixed valuen50.88.
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TABLE III. Description of the dual of the diamond lattice as a lattice with a six-point basis. Each of the points in the first r
connected to the points listed in its column.

1, x 2, x 3, x 4, x 5, x 6, x

2, x 1, x 1, x 1, x1(0,0,1) 1,x 1, x1(0,0,1)
2, x1(0,21,0) 1,x1(0,1,0) 1,x1(0,0,1) 1,x1(21,0,1) 2,x 2, x1(0,21,1)
3, x 3, x 2, x 2, x1(21,0,1) 3,x 3, x
3, x1(0,0,21) 3, x1(0,1,21) 2, x1(0,21,1) 2,x1(0,21,1) 4,x1(1,0,21) 4, x
4, x1(0,0,21) 4, x1(1,0,21) 4, x 3, x
4, x1(1,0,21) 4, x1(0,1,21) 4, x1(1,0,21) 3, x1(21,0,1)
5, x 5, x 5, x 5, x1(21,0,1)
6, x1(0,0,21) 6, x1(0,1,21) 6, x 6, x
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rather difficult to depict. It is a sort of ‘‘pyramid,’’ built from
four regular hexagons. On the four corners of the pyram
an additional small tetrahedron~points$1,2,3,5% in Fig. 2! is
placed. To stack the Wigner-Seitz cells of the diamond
tice, half the cells are rotated byp aroundx1. Moreover, half
the cells are rotated byp/3 aroundx1`x2, where` is the
outer product. The dual lattice is described in Table III a
lattice with a six-point basis. Four of the basis points ha
eight connected neighbors, while the other two basis po
have four. The average coordination number is theref
6 2
3.

III. CALCULATION OF PERCOLATION THRESHOLDS

The method to calculate the percolation thresholds
these lattices with a basis is described in Ref.@7#. It boils
down to writing a small computer program to make an e
plicit list of bonds for a specific lattice with a given siz
Tables I–III can be used for this purpose. This l
can be read by a program that uses two arrays,
SITES~QMAX,NSITES! andBONDS~2,NBONDS! to handle any de-
sired topology~QMAX is the maximum coordination num
ber!. This program uses the method given in Ref.@1# to cal-
culate percolation thresholds. The results for several lat
sizes are given in Table IV.

The percolation threshold for finite lattices scales with
linear lattice sizeL as

upc~L !2pc~`!u;L21/n. ~2!

Heren is a critical exponent, which in three dimensions h
the value 0.88@1#. I have fitted the results in Table IV to thi
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scaling relation, keepingn fixed at 0.88. The results of th
fits are also shown in the table.

I have checked the results in Table IV in the followin
way. I generated a set of, e.g., fcc lattice coordinates. Ba
on these coordinates, I explicitly constructed the dual latt
by means of the Voronoi tessellation. In Ref.@7# this was
done for the body-centered-cubic lattice, which was re
tively simple because the dual of the bcc lattice has coo
nation number 4. However, for the duals of the fcc, hcp, a
diamond lattices the Voronoi tessellation is degenerate
therefore the tessellation had to be performed more carefu
In all these cases, results were obtained for several la
sizes and the percolation threshold at infinite lattice size w
determined by fitting these results to the scaling relation.

IV. DISCUSSION

The results for the percolation thresholds are listed
Table IV. The fit results on the last row were obtained
using the data points for the three largest lattice sizes o
Examples of the scaling behavior and the fit through the d
points are shown in Fig. 3. In the figure, the fit goes throu
the data points for the smallest lattice sizes when taking
account their estimated error margins.~For the dual of the
fcc lattice these are the points atL58,16, whereas for the
dual of the diamond lattice this is the point atL58.! This
implies that the used lattice sizes were comfortably with
the scaling regime.

Galam and Mauger@4,5# noted that the fcc and hcp lat
tices have equal dimension (d53) and coordination numbe
(q512) and have equal percolation thresholds too. This
nontrivial result because topologically these lattices are
igit are

al
TABLE IV. Percolation thresholds as a function of linear lattice sizeL. The values in the last row are
results of a fit of the last three data points to the scaling relation. Error estimates concerning the last d
indicated in parentheses.

Sites Bonds
L fcc dual hcp dual diamond dual fcc dual hcp dual diamond du

8 0.3550~24! 0.3391~10! 0.4018~12! 0.2802~16! 0.2735~10! 0.2392~10!
16 0.3442~12! 0.3233~6! 0.3953~6! 0.2760~8! 0.2644~4! 0.2376~4!

32 0.3392~6! 0.3163~4! 0.3931~4! 0.2729~4! 0.2606~4! 0.2362~4!

64 0.3363~4! 0.3128~4! 0.3912~4! 0.2714~2! 0.2588~2! 0.2355~2!

100 0.3356~4! 0.2710~2!

` 0.3341~5! 0.3101~5! 0.3904~5! 0.2703~3! 0.2573~3! 0.2350~5!
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identical. An intriguing result from the present study is th
their dual lattices also have equald andq (3 and 513, respec-
tively!, but that for these dual lattices the percolation thre
olds arenotequal. This is another piece of evidence to pro
thatd andq are not enough to predict percolation threshol

In Ref. @7# I concluded from a large collection of perco
lation thresholds that, as a general rule, the percola
thresholds decrease when the coordination number incre
There was only one exception to this rule: The site perco
tion threshold of the pentagonal lattice (0.6471) is low
than that of the Kagome´ lattice (0.6527 . . . ), although its
average coordination number is lower (31

3 vs 4). In the
present study we encounter another exception, viz., the
of the diamond lattice. The average coordination numbe
this lattice is 623 and the bond percolation threshold lies b
tween the thresholds of lattices withq56 andq57 ~see Ref.
@7#!. The exception is the site percolation threshold, wh
lies between thresholds of lattices withq54 andq55. This
rather surprising result was confirmed by the independ
calculation based on the Voronoi tessellation, as explaine
Sec. III.

It is possible to understand roughly why the dual of t
diamond lattice has a high site percolation threshold. Le
consider the basis points 5 and 6 of the lattice. From Fig.
is clear that, e.g., points 1 and 3 are connected via poin
However, they are also directly connected. In fact,all the
‘‘neighbors’’ of point 5 are also direct neighbors of ea
other. The same is true for point 6. So, in a manner of spe
ing, when one traverses the lattice from one side to the ot
points 5 and 6 are always a ‘‘detour.’’ Therefore one c
argue that for site percolation these points are comple
irrelevant. This is illustrated in a two-dimensional examp
in Fig. 4. When one considers clusters of occupied sites
does not matter whether the points of typeD are occupied or
not. For bond percolation, however, it does make a diff
ence whether or not the bonds connecting, e.g.,A with D are
occupied.

I have studied the lattice that is obtained by omitting t
basis points 5 and 6. One can take basis points 1–4 in T

FIG. 4. Two-dimensional example of a situation where a po
(D) is irrelevant for site percolation.
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III and use only the first six lines in the table. This defines
lattice with a four-point basis andq56. I have calculated the
percolation threshold for this ‘‘reduced’’ lattice to b
0.389860.0008 for site percolation and 0.270960.0006 for
bond percolation. These results are as expected accordin
the above arguments. The bond percolation threshold
higher than for the dual of the diamond lattice. This is re
sonable because the coordination number of the reduced
tice is lower. However, the site percolation threshold is
same as for the dual of the diamond lattice, despite the lo
coordination number. It follows that the exceptional val
for the site percolation threshold of the dual of the diamo
lattice is in part due to the peculiar role of the basis point
and 6 in the lattice. The presence of these points make
difference to the site percolation threshold, but does m
the coordination numberq higher.

The reduced lattice still has a high site percolation thre
old compared to other lattices withq56. Although this is
not understood at present, it has an analog in two dim
sions. The reduced lattice is a lattice with a four-point ba
and the basis can be chosen such that the basis points fo
regular tetrahedron.@For instance, one can choose the ba
$(1,x),(2,x),(3,x),„4,x1(1,0,21)…%.# A two-dimensional
analog of this lattice is a lattice with a three-point bas
where the three basis points form a regular triangle. Thi
the Kagome´ lattice; see Fig. 5. The two-dimension
Kagomélattice was noticed in@7# to have an exceptionally
high site percolation threshold as well.

Finally, based on the results of Table IV, one can add
bond percolation thresholds for the fcc lattice and its d
~and likewise for the hcp and diamond lattice!. The results
are 0.390, 0.377, and 0.624, respectively, compared
0.498 for the simple cubic lattice and 0.583 for the bcc l
tice. I conclude that there is no obvious regularity in the s
of bond percolation thresholds in three dimensions.

t

FIG. 5. Description of the Kagome´ lattice as a lattice with a
three-point basis. The basis points form a~regular! triangle.
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