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Percolation thresholds of the duals of the face-centered-cubic, hexagonal-close-packed,
and diamond lattices
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A calculation of percolation thresholds of titial lattices of the face-centered-cubidcc) lattice, the
hexagonal-close-packdticp) lattice, and the diamond lattice is presented. The results are used to investigate
whether these thresholds can be related to the thresholds of the fcc, hep, and diamond lattices themselves. In
two dimensions there is such a relation, but the present results indicate that there is no such relation in three
dimensions. Also, the site percolation threshold of the dual of the diamond lattice turns out to be high:
Although the average coordination numbogof this lattice is &, its site percolation threshold is higher than for
many lattices withg=5. [S1063-651X97)00906-9

PACS numbes): 64.60.Ak, 64.60.Cn, 64.70.Pf

I. INTRODUCTION tion thresholdd=a. Galam and Mauger observed that there
are only two classes of latticé®r d<7). The results of Eq.
Percolation processes are relevant to a variety of physicdll) for all lattices in Ref[4] were very good.
problems and have been treated by many autlkifns re- However, in Refs[6,7], percolation thresholds were cal-
views, see Refd.1,2]). Most of the attention has been given culated for many lattices that were not included in the
to percolation on regular lattices because it is much easier t&alam-Mauger study. Among these lattices were many that
compute quantities for these lattices. Nevertheless, exact penrad equad andq, but different percolation thresholds. The
colation thresholds are known for only few lattices. For someconclusion was therefore thdt and q are not sufficient to
other lattices, rigorous bounds on the percolation thresholdgredict percolation thresholds.
have been derive(e.g., in Ref[3]). For most lattices only This raises the question of what is really known about the
numerical estimates are known. trends in the values of the percolation thresholds. In general,
Many investigators have sought some sort of regularity irone can say that lattices with a higher coordination number
the mostly numerical results. For instance, people havéave lower percolation thresholds. There is an exception to
searched for empirical formulas, which express the percolathis rule in two dimensiongthe Kagomeattice [7]), but in
tion thresholdp. of a lattice in terms of its more simple three dimensions this rule holds for all known percolation
properties. The formulas that have been proposed use thkresholds. However, the rule is only an observation on the
dimensiond and the coordination numbey of the lattice.  basis of (numerically known threshold values; there is no
For instance, Galam and Mauger, who presented a brief ré¢heoretical proof.
view of the progress in this area, proposed a single formula In two dimensions, there is another rule that has been
that would apply to all latticef4,5]: established, in this case theoretically. Sykes and E4&m
conjectured that the bond percolation threshold of a two-
Pe=pol(d—1)(q—1)] 2dP. (1) dimensional lattice and the one of its dual lattice should add
to one. Kesten later proved this rigorously for periodic two-
The parameters, b, and p, were determined by fits to dimensional Iatt!ces with at Iea;t one axis of syr_nméﬁ}/
known values for a number of lattices. For site percolation" three dimensions, not much is known theoretically. Even

thresholds one always hais=0, whereas for bond percola- Numerically, the only example one had until recently was the
percolation threshold of the simple cubic lattice, which is its

TABLE |. Description of the dual of the face-centered-cubic own dual lattice. In this case the sum is 0.24882488
lattice as a lattice with a three-point basis. Each of the points in the=0-4976. From the recent data in R¢T], one can check
first row is connected to the points listed in its column.

1, x 2, X 3, X

2,X 1,x 1,x

2,x+(-1,0,0) 1,x+(1,0,0) 1,x+(1,0,0)

2,x+(-1,1,0) 1,x+(1,-1,0) 1,x+(0,1,0)

2,x+(—-1,0,1) 1,x+(1,0,—-1) 1,x+(0,0,1)

3, X

3, x+(-1,0,0)

3, x+(0,—1,0)

3,x+(0,0-1) FIG. 1. Wigner-Seitz cell for the hexagonal-close-packed lattice.

1063-651X/97/586)/65935)/$10.00

55

The basis points for the dual lattice are numbered; see also Table II.
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TABLE IlI. Description of the dual of the hexagonal-close-packed lattice as a lattice with a six-point basis. Each of the points in the first
row is connected to the points listed in its column.

1, x 2, X 3, X 4, X 5, X 6, X
2, X 1, x 1, x 2, X 3, X 4, X
3,x 4, x 1, x+(1,—1,0) 2,x+(1,—1,0) 3,x+(—1,1,0) 4,x+(-1,1,0)
3,x+(—-1,1,0) 4,x+(—-1,1,0) 1,x+(0,—1,0) 2,x+(0,—1,0) 3,x+(-1,0,0) 4,x+(—1,0,0)
3, x+(0,1,0) 4,x+(0,1,0) 4.x 3, X 6, x+(—0,0,1) 5,x+(0,0,—1)

4,x+(0,0,1) 3,x+(0,0-1)

5,x 6, X
5, x+(1,0,0) 6,x+(1,0,0)
5, x+(1,—1,0) 6,x+(1,—1,0)

that in almost all cases the bond percolation thresholds of a Il. DUAL LATTICES

three-dimensional lattice and its dual add up to

0.495+0.002. The only exceptions are the body-centered- . ; :
. ) ; use of the Wigner-Seitz celbr Voronoi polyhedron11)).
cubic lattice(0.583 and a random latticé0.491). One could The “corners” of the Wigner-Seitz cell are the sites of the

speculate that there is a general rule with only a few outliersy, 5 |attice: the edges of the Wigner-Seitz cell are the bonds
However, all the lattices for which the bond percolation of the dual lattice. If one considers a number of spheres that
thresholds add to 0.4950.002 are “stacked lattices.” That gare stacked to form a fcc lattice, the dual lattice can be used,
is, these lattices are constructed by stacking two-dimension@l.g. to describe the empty space in between the spheres.
lattices directly on top of each other. These lattices are therefhis method has been used, among other things, for calcula-
fore almost all anisotropic. tions of fluid flow [12] and electrical conductivity13] in

The most important three-dimensional lattices are the@andom bead packs.
ones that one encounters in nature. In solid state physics A picture of the Wigner-Seitz cell for the fcc lattice can
these are called the simple cubic, the bcc, the fcc, the hcfhe found in Ref.[10]. The dual of the fcc lattice can be
and the diamond latticgl0]. The percolation thresholds of described as a lattice with a three-point basis; see Table I.
all these lattices have been calculated numeriddlly For ~ One basis point has eight connected neighbors, the other two
the dual latticesthis has only been done for the bcc lattice basis points have four. Therefore the average coordination
[7] (and the simple cubic lattice, which is self-dual number of this lattice is &

Therefore | calculated the percolation thresholds for the The dual of the hcp lattice is described in Table Il as a
duals of the fcc, hep, and diamond lattices. The results justifyattice with a six-point basis. | have indicated my choice for
two conclusions. First, the sum of bond percolation threshthese basis points in Fig. 1, where a picture of the Wigner-
olds of a lattice and its dual is different for all lattices. Sec-Seitz cell of the hcp lattice is shown. These Wigner-Seitz
ond, the dual of the bcc lattice has a high coordination numeells are stacked to fill the space. In the case of the hcp
ber (q=6%), but its site percolation threshold is higher than lattice, the cells that are displaced by one unit in the
that of many lattices withg=5. In other words, the site direction are also rotated by aroundxs;. Two basis points
percolation thresholds ameot ordered with respect to the of the dual lattice have eight connected neighbors, whereas
coordination number of the lattice. the remaining four basis points have four. Therefore this lat-

tice also has an average coordination numbgr 5
The Wigner-Seitz cell for the diamond latti¢Eig. 2) is

The dual lattice of a given lattice can be constructed by

@(L)— (=)
0.1

fit fec-dual —

data fcc-dual —e—
fit diamond-dual -~
data diamond-dual ——

001} TE

0.001 | f

0.0001

10 100
linear system size L
FIG. 2. Wigner-Seitz cell for the diamond lattice. The basis
points for the dual lattice are numbered; see also Table Ill. Point FIG. 3. Examples of the scaling of the site percolation threshold
6 is indicated in gray because it is located in an adjacent Wignerwith the linear system sizé: the duals of the fcc and diamond
Seitz cell. Its position can be found by extending the line from pointlattices. The lines are determined by fits to the data points for the
5 to point 3. three largest lattices, using a fixed value 0.88.
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TABLE IIl. Description of the dual of the diamond lattice as a lattice with a six-point basis. Each of the points in the first row is
connected to the points listed in its column.

1,x 2, X 3, X 4, X 5, X 6, X

2, X 1,x 1, x 1, x+(0,0,1) 1,x 1, x+(0,0,1)
2,x+(0,-1,0) 1,x+(0,1,0) 1,x+(0,0,1) 1x+(-1,0,1) 2,X 2,x+(0,—1,1)
3, X 3, X 2, X 2,x+(—-1,0,1) 3,X 3, X
3,x+(0,0~1) 3,x+(0,1-1) 2,x+(0,—1,1) 2,x+(0,—1,1) 4,x+(1,0-1) 4,x
4,x+(0,0,-1) 4,x+(1,0-1) 4,x 3, X

4,x+(1,0-1) 4,x+(0,1,-1) 4,x+(1,0-1) 3,x+(—-1,0,1)

5,x 5, x 5, X 5,x+(—-1,0,1)

6, x+(0,0,-1) 6,x+(0,1,-1) 6, X 6, X

rather difficult to depict. It is a sort of “pyramid,” built from

scaling relation, keeping fixed at 0.88. The results of the

four regular hexagons. On the four corners of the pyramidfits are also shown in the table.

an additional small tetrahedrgpoints{1,2,3,5 in Fig. 2) is | have checked the results in Table IV in the following
placed. To stack the Wigner-Seitz cells of the diamond latway. | generated a set of, e.g., fcc lattice coordinates. Based
tice, half the cells are rotated by aroundx;. Moreover, half  on these coordinates, | explicitly constructed the dual lattice
the cells are rotated by/3 aroundx;/\x,, where/\ is the by means of the Voronoi tessellation. In RgT] this was
outer product. The dual lattice is described in Table Il as alone for the body-centered-cubic lattice, which was rela-
lattice with a six-point basis. Four of the basis points havdively simple because the dual of the bcc lattice has coordi-
eight connected neighbors, while the other two basis pointsation number 4. However, for the duals of the fcc, hcp, and
have four. The average coordination number is thereforgliamond lattices the Voronoi tessellation is degenerate and
63. therefore the tessellation had to be performed more carefully.
In all these cases, results were obtained for several lattice
sizes and the percolation threshold at infinite lattice size was
determined by fitting these results to the scaling relation.

The method to calculate the percolation thresholds for
these lattices with a basis is described in R&l. It boils
down to writing a small computer program to make an ex-
plicit list of bonds for a specific lattice with a given size.  The results for the percolation thresholds are listed in
Tables I-Ill can be used for this purpose. This listTable IV. The fit results on the last row were obtained by
can be read by a program that uses two arrays, i.eysing the data points for the three largest lattice sizes only.
SITESQMAX,NSITES) andBONDS(2,NBONDS to handle any de- Examples of the scaling behavior and the fit through the data
sired topology(QMAX is the maximum coordination num- points are shown in Fig. 3. In the figure, the fit goes through
ber). This program uses the method given in Héf.to cal-  the data points for the smallest lattice sizes when taking into
culate percolation thresholds. The results for several latticeccount their estimated error margiigor the dual of the
sizes are given in Table IV. fcc lattice these are the points kbt=8,16, whereas for the

The percolation threshold for finite lattices scales with thedual of the diamond lattice this is the point lat8.) This
linear lattice size as implies that the used lattice sizes were comfortably within
the scaling regime.

Galam and Maugef4,5] noted that the fcc and hcp lat-
tices have equal dimensiod€ 3) and coordination number
Herev is a critical exponent, which in three dimensions has(q=12) and have equal percolation thresholds too. This is a
the value 0.881]. | have fitted the results in Table IV to this nontrivial result because topologically these lattices are not

Ill. CALCULATION OF PERCOLATION THRESHOLDS

IV. DISCUSSION

|pe(L) = pe(e) [~ L~ )

TABLE IV. Percolation thresholds as a function of linear lattice dizeThe values in the last row are
results of a fit of the last three data points to the scaling relation. Error estimates concerning the last digit are
indicated in parentheses.

Sites Bonds

L fce dual hcp dual diamond dual fce dual hcp dual diamond dual
8 0.355(024) 0.339110) 0.401812) 0.280216) 0.273510) 0.239210)

16 0.344212) 0.32336) 0.39536) 0.276@8) 0.26444) 0.23764)

32 0.33926) 0.31634) 0.39314) 0.27294) 0.26064) 0.23624)

64 0.33634) 0.31284) 0.39124) 0.27142) 0.25882) 0.23552)

100 0.33564) 0.271G2)

o0 0.33415) 0.31015) 0.39045) 0.27033) 0.25733) 0.235@5)
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A : | : B >< ><
FIG. 4. Two-dimensional example of a situation where a point
(D) is irrelevant for site percolation.

identical. An intriguing result from the present study is that \/ \/

their dual lattices also have equhbndq (3 and 5, respec-
tively), but that for these dual lattices the percolation thresh- i 5. pescription of the Kagomtattice as a lattice with a
olds arenotequal. This is another piece of evu;lence t0 Provehree-point basis. The basis points fornfregula) triangle.
thatd andq are not enough to predict percolation thresholds. _ o ) ) ]

In Ref.[7] | concluded from a large collection of perco- !ll and use only the first six lines in the table. This defines a
lation thresholds that, as a general rule, the percolatiofttice with a four-point basis angi=6. | have calculated the

thresholds decrease when the coordination number increas@grcolation threshold for this “reduced” lattice to be
There was only one exception to this rule: The site percola®-3898+0.0008 for site percolation and 0.2769.0006 for

tion threshold of the pentagonal lattice (0.6471) is lowerPond percolation. These results are as expected according to

. . . the above arguments. The bond percolation threshold is
than that of the Kagoméattice (0.657 .. .), although its . : . 2
average coordination number is lower X(®s 4). In the higher than for the dual of the diamond lattice. This is rea-

: . sPnabIe because the coordination number of the reduced lat-
present study we encounter another exception, viz., the du

f the di d lattice. Th dinati b ce is lower. However, the site percolation threshold is the
o the diamond lattice. 1he average coordination NUMDEr 0k, a 55 for the dual of the diamond lattice, despite the lower
this lattice is & and the bond percolation threshold lies be-

. . coordination number. It follows that the exceptional value
tween the thresholds of lattices with=6 andq=7 (see Ref. o the site percolation threshold of the dual of the diamond

[7]). The exception is the site percolation threshold, whichjattice is in part due to the peculiar role of the basis points 5
lies between thresholds of lattices wifl4 andq=5. This  and 6 in the lattice. The presence of these points makes no
rather surprising result was confirmed by the independengifference to the site percolation threshold, but does make
calculation based on the Voronoi tessellation, as explained ithe coordination numbeg higher.

Sec. lll. The reduced lattice still has a high site percolation thresh-
It is possible to understand roughly why the dual of theold compared to other lattices wiilp=6. Although this is
diamond lattice has a high site percolation threshold. Let usot understood at present, it has an analog in two dimen-
consider the basis points 5 and 6 of the lattice. From Fig. 2 isions. The reduced lattice is a lattice with a four-point basis
is clear that, e.g., points 1 and 3 are connected via point fJand the basis can be chosen such that the basis points form a
However, they are also directly connected. In fadt, the  regular tetrahedroriFor instance, one can choose the basis

“neighbors” of point 5 are also direct neighbors of each {(1x),(2x),(3x),(4x+(1,0—1))}.] A two-dimensional
other. The same is true for point 6. So, in a manner of speakanalog of this lattice is a lattice with a three-point basis,
ing, when one traverses the lattice from one side to the othewhere the three basis points form a regular triangle. This is
points 5 and 6 are always a “detour.” Therefore one canthe Kagome lattice; see Fig. 5. The two-dimensional
argue that for site percolation these points are completeliagomelattice was noticed in7] to have an exceptionally
irrelevant. This is illustrated in a two-dimensional examplehigh site percolation threshold as well.
in Fig. 4. When one considers clusters of occupied sites, it Finally, based on the results of Table 1V, one can add the
does not matter whether the points of typeare occupied or bond percolation thresholds for the fcc lattice and its dual
not. For bond percolation, however, it does make a differ{and likewise for the hcp and diamond lattic&he results
ence whether or not the bonds connecting, &gujth D are  are 0.390, 0.377, and 0.624, respectively, compared to
occupied. 0.498 for the simple cubic lattice and 0.583 for the bcc lat-
| have studied the lattice that is obtained by omitting thetice. | conclude that there is no obvious regularity in the sum
basis points 5 and 6. One can take basis points 1-4 in Tablef bond percolation thresholds in three dimensions.
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